ANHANG B zur Verordnung optische Strahlung Kohärente optische Strahlung (LASER)

Definitionen, Expositionsgrenzwerte, Ermittlung und Beurteilung nach Klassen für Laser Definitionen

Kohärente Strahlung oder Laserstrahlung: aus einem Laser resultierende künstliche optische Strahlung.

LASER (Light Amplification by Stimulated Emission of Radiation - Lichtverstärkung durch stimulierte Emission von Strahlung): jede Einrichtung, die dazu verwendet werden kann, elektromagnetische Strahlung im Bereich der Wellenlänge optischer Strahlung in erster Linie durch einen Prozess kontrollierter stimulierter Emission zu erzeugen oder zu verstärken.

Die biophysikalisch relevanten Expositionswerte für optische Strahlung lassen sich anhand der nachstehenden Formeln bestimmen. Welche Formel zu verwenden ist, hängt von der Wellenlänge und der Dauer der von der Quelle ausgehenden Strahlung ab; die Ergebnisse sind mit den entsprechenden Expositionsgrenzwerten der Tabellen B.4a, B.4b, B.4c, B.4d und B.4e zu vergleichen. Für die jeweilige Laserstrahlenquelle können mehrere Expositionswerte und entsprechende Expositionsgrenzwerte relevant sein.

Die in den Tabellen B.4a, B.4b, B.4c, B.4d und B.4e als Berechnungsfaktoren verwendeten Koeffizienten sind in Tabelle B.2, die Korrekturfaktoren für wiederholte Exposition sind in Tabelle B.3 aufgeführt. Die Strahlungsgefährdungen sind in Tabelle B.1 zusammengefasst.

$$E = \frac{dP}{dA} [W \cdot m^{-2}]$$

$$H = \int_{0}^{t} E(t) \cdot dt \ [J \cdot m^{-2}]$$

Anmerkungen

dP Leistung, ausgedrückt in Watt [W];

dA Fläche, ausgedrückt in Quadratmetern [m²];

E(t), E Bestrahlungsstärke oder Leistungsdichte: die auf eine Fläche einfallende Strahlungsleistung je Flächeneinheit, üblicherweise ausgedrückt in Watt pro Quadratmeter [W·m⁻²]; die Werte E(t) und E werden aus Messungen gewonnen oder können von den Hersteller/innen der Arbeitsmittel angegeben werden:

H Bestrahlung: das Integral der Bestrahlungsstärke über die Zeit, ausgedrückt in Joule pro Quadratmeter [J·m⁻²];

t Zeit, Dauer der Exposition, ausgedrückt in Sekunden [s];

λ Wellenlänge, ausgedrückt in Nanometer [nm];

γ Grenzempfangswinkel, ausgedrückt in Milliradiant [mrad];

 γ_m Messempfangswinkel, ausgedrückt in Milliradiant [mrad];

α Winkelausdehnung einer Quelle, ausgedrückt in Milliradiant [mrad];

Grenzblende: Durchmesser der kreisförmigen Fläche, über die Bestrahlungsstärke und Bestrahlung gemittelt werden;

G integrierte Strahldichte: das Integral der Strahldichte über eine bestimmte Expositionsdauer, ausgedrückt als Strahlungsenergie je Flächeneinheit einer Abstrahlfläche je Einheitsraumwinkel der Emission, ausgedrückt in Joule pro Quadratmeter pro Steradiant [J·m⁻²·sr⁻¹].

Tabelle B.1: Strahlungsgefährdung

Wellenlänge λ [nm]	Ü		Gefährdung	Tabellen für Expositionsgrenzwerte
180 bis 400 UV		Auge	Photochemische Schädigung und thermische Schädigung	B.4a B.4c
180 bis 400	UV	Haut	Erythem	B.4e
400 bis 700	sichtbar	Auge	Netzhautschädigung	B.4b, B.4d
400 bis 600	sichtbar	Auge	Photochemische Schädigung	B.4d
400 bis 700	sichtbar	Haut	Thermische Schädigung	B.4e
700 bis 1400	sichtbar, IR-A	Auge	Thermische Schädigung	B.4b B.4c
700 bis 1400	sichtbar, IR-A	Haut	Thermische Schädigung	B.4e
1400 bis 2600	IR-B	Auge	Thermische Schädigung	B.4b
2600 bis 10 ⁶	IR-B, IR-C	Auge	Thermische Schädigung	B.4b
1400 bis 10 ⁶	IR-B, IR-C	Auge	Thermische Schädigung	B.4c
1400 bis 10 ⁶	IR-B, IR-C	Haut	Thermische Schädigung	B.4e

Tabelle B.2: Korrekturfaktoren und sonstige Berechnungsparameter (s. Tab. B.4b bis B.4e)

Parameter nach ICNIRP(*)	Gültiger Spektralbereich λ [nm]	Wert	
	$\lambda < 700$	$C_{A} = 1,0$	
C_A	700 – 1050	$C_A = 10^{0,002(\lambda - 700)}$	
	1050 – 1400	$C_A = 5.0$	
Св	400 – 450	$C_{\rm B} = 1.0$	
C_{B}	450 – 700	$C_B = 10^{0.02(\lambda - 450)}$	
	700 – 1150	$C_{\rm C} = 1.0$	
C_{C}	1150 – 1200	$C_{\rm C} = 10^{0.018(\lambda - 1150)}$	
	1200 – 1400	$C_{\rm C} = 8.0$	
	λ < 450	$T_1 = 10 \text{ s}$	
T_1	450 – 500	$T_1 = 10 \cdot 10^{0,02 (\lambda - 450)} \mathrm{s}$	
	λ > 500	$T_1 = 100 \text{ s}$	
Parameter nach ICNIRP ^(*)	Biologische Wirkung	Wert	
α_{min}	alle thermischen Wirkungen	$\alpha_{\min} = 1.5 \text{ mrad}$	
Parameter nach ICNIRP(*)	Gültiger Winkelbereich α [mrad]	Wert	
	$\alpha < \alpha_{min}$	$C_{\rm E} = 1.0$	
C_{E}	$\alpha_{\min} < \alpha < 100$	$C_E = \alpha / \alpha_{min}$	
- 2	$\alpha > 100$	$C_E = \alpha^2 / (\alpha_{min} \cdot \alpha_{max}) \text{ mrad}$ bei $\alpha_{max} = 100 \text{ mrad}$	
	α < 1,5	$T_2 = 10 \text{ s}$	
T_2	$1,5 < \alpha < 100$	$T_2 = 10 \cdot 10^{(\alpha - 1,5)/98,5} s$	
	α > 100	$T_2 = 100 \text{ s}$	
Parameter nach ICNIRP(*)	Gültige Expositionsdauer t [s]	Wert	
	t ≤ 100	$\gamma = 11 \text{ [mrad]}$	
	100	1 1 40.5 Γ	
γ	$ \begin{array}{c c} 100 < t < 10^4 \\ t > 10^4 \end{array} $	$\gamma = 1, 1 \cdot t^{0,5} [\text{mrad}]$	

 $^{^{(*)}}$ ICNIRP: International Commission on Non-Ionizing Radiation Protection

www.ris.bka.gv.at

Tabelle B.3: Korrektur bei wiederholter Exposition

Jede der drei folgenden allgemeinen Regeln ist bei allen wiederholten Expositionen anzuwenden, die bei wiederholt gepulster oder modulierter Laserstrahlung auftreten:

- 1. Die Exposition gegenüber jedem einzelnen Impuls einer Impulsfolge darf den Expositionsgrenzwert für einen Einzelimpuls dieser Impulsdauer nicht überschreiten.
- 2. Die Exposition gegenüber einer Impulsgruppe (oder einer Untergruppe von Impulsen in einer Impulsfolge) innerhalb des Zeitraums t darf den Expositionsgrenzwert für die Zeit t nicht überschreiten.
- 3. Die Exposition gegenüber jedem einzelnen Impuls in einer Impulsgruppe darf den Expositionsgrenzwert für den Einzelimpuls, multipliziert mit einem für die kumulierte thermische Wirkung geltenden Korrekturfaktor $C_p = N^{-0,25}$ nicht überschreiten (wobei N die Zahl der Impulse ist). Diese Regel gilt nur für Expositionsgrenzwerte zum Schutz gegen thermische Schädigung, wobei alle in weniger als T_{min} erzeugten Impulse als einzelner Impuls behandelt werden.

Parameter	Gültiger Spektralbereich λ[nm]	Wert
	$315 < \lambda \le 400$	$T_{min} = 10^{-9} \text{ s } (= 1 \text{ ns})$
	$400 < \lambda \le 1050$	$T_{\text{min}} = 18 \cdot 10^{-6} \text{ s } (= 18 \mu\text{s})$
	$1050 < \lambda \le 1400$	$T_{\text{min}} = 50 \cdot 10^{-6} \text{ s} \ (= 50 \ \mu\text{s})$
T _{min}	$1400 < \lambda \le 1500$	$T_{min} = 10^{-3} \text{ s } (= 1 \text{ ms})$
	$1500 < \lambda \le 1800$	$T_{\min} = 10 \text{ s}$
	$1800 < \lambda \le 2600$	$T_{min} = 10^{-3} \text{ s } (= 1 \text{ ms})$
	$2600 < \lambda \le 10^6$	$T_{min} = 10^{-7} \text{ s } (= 100 \text{ ns})$

Expositionsgrenzwerte

Tabelle B.4a: Expositionsgrenzwerte des Auges gegenüber Laserstrahlen - Kurze Expositionsdauer < 10 s

Well	enlänge ^(a)	Grenz-			Dauer t [s]		
λ	. [nm]	blende	10 ⁻¹³ - 10 ⁻¹¹ 10 ⁻¹¹ - 10 ⁻⁹		10 ⁻⁹ – 10 ¹		
UV-C	180 - 280				$H = 30 [J \cdot m^{-2}]$		
	280 - 302				H = 30 [J·III]		
	303				$H = 40 \text{ [J·m}^{-2}\text{]}; \text{ wenn } t < 2,6 \cdot 10^{-9} \text{ dann } H = 5,6 \cdot 10^{3} \text{ t}^{0,25} \text{ [J·m}^{-2}\text{]}; \text{ siehe Fußnote}^{(d)}$		
	304				$H = 60 \text{ [J·m}^{-2}\text{]}; \text{ wenn } t < 1,3\cdot10^{-8} \text{ dann } H = 5,6\cdot10^3 \text{ t}^{0,25} \text{ [J·m}^{-2}\text{]}; \text{ siehe Fußnote}^{(d)}$		
	305				$H = 100 \text{ [J·m}^{-2}]; \text{ wenn } t < 1,0.10^{-7} \text{ dann } H = 5,6.10^3 \text{ t}^{0.25} \text{ [J·m}^{-2}]; \text{ siehe Fußnote}^{(d)}$		
	306				$H = 160 \text{ [J·m}^{-2}\text{]}; \text{ wenn } t < 6.7 \cdot 10^{-7} \text{ dann } H = 5.6 \cdot 10^{3} \text{ t}^{0.25} \text{[J·m}^{-2}\text{]}; \text{ siehe Fußnote}^{(d)}$		
	307				$H = 250 \text{ [J·m}^{-2}\text{]}; \text{ wenn } t < 4,0\cdot10^{-6} \text{ dann } H = 5,6\cdot10^3 \text{ t}^{0,25} \text{ [J·m}^{-2}\text{]}; \text{ siehe Fußnote}^{(d)}$		
UV-B	308	l mm für		$E = 3.10^{10} [W \cdot m^{-2}];$ siehe	$H = 400 \text{ [J·m}^{-2}\text{]}; \text{ wenn } t < 2,6\cdot10^{-5} \text{ dann } H = 5,6\cdot10^3 \text{ t}^{0,25} \text{ [J·m}^{-2}\text{]}; \text{ siehe Fußnote}^{(d)}$		
	309	t < 0.3 s; $1.5 \cdot t^{0.375} \text{ für}$			$H = 630 \text{ [J·m}^{-2}\text{]}; \text{ wenn } t < 1,6\cdot10^{-4} \text{ dann } H = 5,6\cdot10^{3} \text{ t}^{0,25} \text{[J·m}^{-2}\text{]}, \text{ siehe Fußnote}^{(d)}$		
	310				$H = 10^3 \text{ [J·m}^{-2]}; \text{ wenn } t < 1,0.10^{-3} \text{ dann } H = 5,6.10^3 \text{ t}^{0.25} \text{ [J·m}^{-2]}; \text{ siehe Fußnote}^{(d)}$		
		0.3 s < t < 10 s		$H = 1.6 \cdot 10^3 \text{ [J·m}^{-2]}$; wenn t < 6.7·10 ⁻³ dann H = 5.6·10 ³ t ^{0.25} [J·m ⁻²]; siehe Fußnote (d)			
	312	0,55 1 105			$H = 2.5 \cdot 10^3 \text{ [J·m}^{-2]}$; wenn t < 4.0·10 ⁻² dann H = 5.6·10 ³ t ^{0.25} [J·m ⁻²]; siehe Fußnote ^(d)		
	313				$H = 4.0 \cdot 10^3 \text{ [J·m}^{-2]}$; wenn t < 2,6·10 ⁻¹ dann H = 5,6·10 ³ t ^{0,25} [J·m ⁻²]; siehe Fußnote ^(d)		
	314				$H = 6.3 \cdot 10^3 \text{ [J·m}^{-2]}$; wenn t < $1.6 \cdot 10^0 \text{ dann H} = 5.6 \cdot 10^3 \text{ t}^{0.25} \text{ [J·m}^{-2]}$; siehe Fußnote (d)		
UV-A	315 - 400				$H = 5.6 \cdot 10^3 t^{0.25} [J \cdot m^{-2}]$		

Fußnoten siehe Tabelle B.4b

Tabelle B.4b: Expositionsgrenzwerte des Auges gegenüber Laserstrahlen - Kurze Expositionsdauer < 10 s

Welle	Wellenlänge ^(a) λ [nm]									
λ			10 ⁻¹³ - 10 ⁻¹¹	10 ⁻¹¹ - 10 ⁻⁹	10 ⁻⁹ - 10 ⁻⁷	10 ⁻⁷ - 1,8·10 ⁻⁵	1,8·10 ⁻⁵ - 5·10 ⁻⁵	5·10 ⁻⁵ - 10 ⁻³	10 ⁻³ - 10 ¹	
pun	400 - 700		$H = 1.5 \cdot 10^{-4} \cdot C_E [J \cdot m^{-2}]$	$H = 2.7 \cdot 10^4 \cdot t^{0.75} \cdot C_E [J \cdot m^{-2}]$	$H = 5 \cdot 10^{-3} \cdot C_E [.$	J·m ⁻²]	H = 18	$t^{0,75} \cdot C_E [J \cdot m^{-2}]$	ļ	
sichtbar 1 IR-A	700 – 1050	7 mm	$H = 1.5 \cdot 10^{-4} \cdot C_A \cdot C_E [J \cdot m^{-2}]$	$H = 2.7 \cdot 10^4 \cdot t^{0.75} \cdot C_A \cdot C_E [J \cdot m^{-2}]$	$H = 5 \cdot 10^{-3} \cdot C_A \cdot C$	$C_{\rm E} [{ m J}{\cdot}{ m m}^{-2}]$	H = 18	$t^{0.75} \cdot C_A \cdot C_E$ [J·n	n ⁻²]	
sich	1 050- 1400		$H = 1.5 \cdot 10^{-3} \cdot C_C \cdot C_E [J \cdot m^{-2}]$	$H = 2.7 \cdot 10^5 \cdot t^{0.75} \cdot C_C \cdot C_E [J \cdot m^{-2}]$	$H = 5 \cdot 10^{-2} \cdot C_{C} \cdot C_{C}$	$C_{\rm E} [{ m J}{\cdot}{ m m}^{-2}]$		$H = 90 t^{0.75} \cdot C$		
	1400 – 1500	siehe Fußnote ^(b)	$E = 10^{12} [W \cdot m^{-2}]$ Siehe Fußne	ote ^(c)	$H = 10^3 [J \cdot m^{-2}]$				$H = 5.6 \cdot 10^3 t^{0.25}$ [J·m ⁻²]	
IR-B und IR-C	1500 - 1800		ßnote	ßnote	$E = 10^{13} [W \cdot m^{-2}]$ Siehe Fußne	ote ^(c)	$H = 10^4 [J \cdot m^{-2}]$			
IR-B	1800 - 2600	the Fu	$E = 10^{12} [W \cdot m^{-2}]$ Siehe Fußne	ote ^(c)	$H = 10^3 [J \cdot m^{-2}]$				$H = 5.6 \cdot 10^3 \text{ t}^{0.25}$ [J·m ⁻²]	
	2600 – 10 ⁶	sie	$E = 10^{11} [W \cdot m^{-2}] $ Siehe Fußne	ote ^(c)	$H = 100 [J \cdot m^{-2}]$	$H = 5.6 \cdot 10^3$	t 0,25 [J·m-2]			

Fußnoten zu Tabelle B.4a und B.4b:

⁽a) Existieren für eine Wellenlänge zwei Expositionsgrenzwerte, so gilt der strengere Wert.

⁽b) Wenn 1400 nm $\leq \lambda < 10^5$ nm: *Grenzblende* = 1 mm bei t ≤ 0.3 s und 1,5.t^{0,375} mm bei 0,3 s < t < 10 s; wenn 10⁵ $\leq \lambda <$ 10⁶ nm: *Grenzblende* = 11 mm.

⁽c) Mangels Daten empfiehlt die ICNIRP^(*) für Impulslängen < 1 ns als Expositionsgrenzwert der Bestrahlungsstärke den Grenzwert für eine Impulslänge von 1 ns zu verwenden.

 $^{^{(}d)}$ Die in der Tabelle angegebenen Werte gelten für einzelne Laserimpulse. Bei mehrfachen Laserimpulsen müssen die Impulsdauern von Impulsen, die innerhalb eines Intervalls T_{min} (siehe Tabelle B.3) liegen, aufaddiert werden, und der daraus resultierende Zeitwert muss in der Formel 5,6.10 3 .t $^{0.25}$ für t eingesetzt werden.

^(*) ICNIRP: International Commission on Non-Ionizing Radiation Protection

Tabelle B.4c: Expositionsgrenzwerte des Auges gegenüber Laserstrahlen - Lange Expositionsdauer $\geq 10 \text{ s}$

Well	Wellenlänge ^(a) λ [nm]		Dauer t [s]
λ			$10^{1} - 3 \cdot 10^{4}$
UV-C	180 - 280		$H = 30 [J \cdot m^{-2}]$
	280 - 302		11 30 [3 III]
	303		$H = 40 \ [J \cdot m^{-2}]$
	304		$H = 60 \ [J \cdot m^{-2}]$
	305		$H = 100 [J \cdot m^{-2}]$
	306		$H = 160 [J \cdot m^{-2}]$
	307		$H = 250 [J \cdot m^{-2}]$
UV-B	308	3,5 mm	$H = 400 [J \cdot m^{-2}]$
O V-D	309	3,5 11111	$H = 630 [J \cdot m^{-2}]$
	310		$H = 1,0.10^3 [J \cdot m^{-2}]$
	311		$H = 1,6.10^3 [J \cdot m^{-2}]$
	312		$H = 2,5.10^3 [J \cdot m^{-2}]$
	313		$H = 4,0.10^3 [J \cdot m^{-2}]$
	314		$H = 6.3.10^3 [J \cdot m^{-2}]$
UV-A	315 - 400		$H = 10^4 [J \cdot m^{-2}]$
sichtbar,	wenn $\alpha < 1.5$ mrad, dann $E = 10 \cdot C_A \cdot C_C$ [W·m ⁻²]		wenn $\alpha < 1.5$ mrad, dann $E = 10 \cdot C_A \cdot C_C$ [W·m ⁻²]
IR-A	700 - 1400	7 mm	wenn $\alpha > 1,5$ mrad und $t \le T_2$, dann $H = 18 \cdot C_A \cdot C_C \cdot C_E \cdot t^{0,75} [J \cdot m^{-2}]$ wenn $\alpha > 1,5$ mrad und $t > T_2$, dann $E = 18 \cdot C_A \cdot C_C \cdot C_E \cdot T_2^{-0,25} [W \cdot m^{-2}]$ (maximal 1000 W·m ⁻²)
IR-B, IR-C	1400 - 10 ⁶	Siehe Fußnote ^(c)	$E = 1000 \text{ [W·m}^{-2}]$

Tabelle B.4d: Expositionsgrenzwerte des Auges gegenüber Laserstrahlen im sichtbaren Bereich - Lange Expositionsdauer ≥ 10 s

V	Wellenlänge ^(a)		Dauer t [s]			
	λ [nm]	blende	10 ¹ - 10 ²	10 ² - 10 ⁴	$10^4 - 3 \cdot 10^4$	
tbar	400 - 600 Photochemisch ^(b) Netzhautschädigung		$H = 100 \cdot C_B [J \cdot m^{-2}]$ $(\gamma = 11 \text{ mrad})^{(d)}$	$E = 1 \cdot C_B [W \cdot m^{-2}]; (\gamma = 1, 1 t^{0,5} mrad)^{(d)}$	$E = 1 \cdot C_B [W \cdot m^{-2}]$ $(\gamma = 110 \text{ mrad})^{(d)}$	
sicht	400 - 700 Thermisch ^(b) Netzhautschädigung	7 mm	wenn $\alpha < 1,5$ mrad, α wenn $\alpha > 1,5$ mrad u wenn $\alpha > 1,5$ mrad u	$\begin{aligned} &\text{dann E} = 10 \ [\text{W} \cdot \text{m}^{-2}] \\ &\text{nd t} \leq T_2, \ \text{dann H} = 18 \cdot \text{C}_{\text{E}} \cdot \text{t}^{0.75} \ [\text{J} \cdot \text{m}^{-2}] \\ &\text{nd t} > T_2, \ \text{dann E} = 18 \cdot \text{C}_{\text{E}} \cdot \text{T}_2^{-0.25} \ [\text{W} \cdot \text{m}^{-2}] \end{aligned}$		

Fußnoten zu Tabelle B.4c und B.4d:

- (a) Existieren für eine Wellenlänge oder eine andere Eigenschaft des Lasers zwei Expositionsgrenzwerte, so gilt der strengere Wert.
- (b) Bei kleinen Quellen mit einem Öffnungswinkel von 1,5 mrad oder weniger sind die beiden Expositionsgrenzwerte für sichtbare Strahlung E von 400 nm bis 600 nm zu reduzieren auf die thermischen Expositionsgrenzwerte für $10 \text{ s} \le t < T_1$ und auf die photochemischen Expositionsgrenzwerte für längere Zeiten. Zu T_1 und T_2 siehe Tabelle B.2. Der Expositionsgrenzwert für photochemische Netzhautgefährdung kann auch ausgedrückt werden als Integral der Strahldichte über die Zeit $G = 10^6 \cdot C_B \, [\text{J·m}^{-2} \cdot \text{sr}^{-1}]$, wobei Folgendes gilt:
- t > 10 s bis zu t = 10000 s und $L = 100 \cdot C_B [W \cdot m^{-2} \cdot sr^{-1}]$ bei t > 10000 s. Zur Messung von G und L ist γ_m als Mittelung des Gesichtsfelds zu verwenden. Die offizielle Grenze zwischen sichtbar und Infrarot ist 780 nm (entsprechend der Definition der CIE). Die Spalte mit den Bezeichnungen für die Wellenlängenbänder dient lediglich der besseren Übersicht. (Die Bezeichnung G wird vom CEN verwendet, die Bezeichnung L_t von der CIE und die Bezeichnung L_p von der IEC und dem CENELEC.)
- (c) Für die Wellenlänge 1 400 10⁵ nm: *Grenzblende* = 3,5 mm; für die Wellenlänge 10⁵ nm 10⁶ nm: *Grenzblende* = 11 mm.
- Grenzkegelwinkel, in eckigen Klammern in der entsprechenden Spalte angegeben), dann sollte das Messgesichtsfeld γ_m den Wert γ erhalten. (Bei Verwendung eines größeren Messgesichtsfelds würde die Gefährdung zu hoch angesetzt.) Wenn $\alpha < \gamma$, dann muss das Messgesichtsfeld γ_m groß genug sein, um die Quelle einzuschließen; es ist ansonsten jedoch nicht beschränkt und kann größer sein als γ .

Tabelle B.4e: Expositionsgrenzwerte der Haut gegenüber Laserstrahlen

We	Wellenlänge ^(a)		Dauer t [s]						
	λ [nm]	blende	< 10 ⁻⁹	10 ⁻⁹ - 10 ⁻⁷	10 ⁻⁷ - 10 ⁻³	$10^{-3} - 10^{1}$	10 ¹ - 10 ³	$10^3 - 3 \cdot 10^4$	
UV (A,B,C)	180 - 400		$E = 3.10^{10} [W \cdot m^{-2}]$	Gleiche Werte wie Ex	leiche Werte wie Expositionsgrenzwerte für das Auge				
sichtbar,	400 - 700	1	$E = 2 \cdot 10^{11} [W \cdot m^{-2}]$	H = 200.C [Lm ⁻²]	$H = 1,1 \cdot 10^4 \cdot C_A \cdot t^{0.25} [J \cdot m^{-2}]$		$E = 2 \cdot 10^3 \cdot C_A [W \cdot m^{-2}]$		
IR-A	700 - 1400		$E = 2.10^{11} C_A [W \cdot m^{-2}]$	$H = 200 \cdot C_A [J \cdot m]$	$H = 1,1.10 \cdot C_A \cdot t = [J$	[3.111]	E - 2.10 ·C _A [w·m]		
	1400 - 1500	3,5 mm	$E = 10^{12} [W \cdot m^{-2}]$		•				
IR-B,	1500 - 1800		$E = 10^{13} [W \cdot m^{-2}]$	Gleiche Werte wie Evnositionsgrenzwei	vinositions arangivanta film das Auga				
IR-C	1800 - 2600		$E = 10^{12} [W \cdot m^{-2}]$		e iui das Auge				
	2600 - 10 ⁶		$E = 10^{11} [W \cdot m^{-2}]$						

⁽a) Existieren für eine Wellenlänge oder eine andere Eigenschaft des Lasers zwei Expositionsgrenzwerte, so gilt der strengere Wert.

Ermittlung und Beurteilung nach Klassen für Laser

Tabelle B.5 - Laserklassen, Gefahr, Maßnahmen (Expositionsgrenzwert)

Laser- klasse	Gefahr ⁽¹⁾ hinsichtlich biologischer Wirkung im Gefahrenbereich	Kann Expositionsgrenzwert überschritten sein? Falls ja, ist § 3 Abs. 2 anzuwenden.
Klasse 1	■ augen- und hautsicher	Ja, bei Instandhaltung ⁽²⁾ Sonst: Nein
Klasse 1 M	 augensicher, falls nicht durch Blick mit optischen Instrumenten der Strahlquerschnitt verkleinert wird und hautsicher 	Ja, bei Instandhaltung ⁽²⁾ Ja, bei Anwendung von optischen Instrumenten Sonst: Nein
Klasse 2	 augensicher durch Abwendungsreaktion und Lidschlussreflex und hautsicher 	Ja, bei Instandhaltung ⁽²⁾ Ja, bei Applikationen, die Abwendungsreaktionen oder Lidschlussreflex einschränken oder verhindern sowie ■ unter Verhältnissen, bei denen bewusst in den Strahl geblickt werden muss Sonst: Nein
Klasse 2 M	 augensicher durch Abwendungsreaktion und Lidschlussreflex; falls nicht durch Blick mit optischen Instrumenten der Strahlquerschnitt verkleinert wird und hautsicher 	Ja, bei Instandhaltung ⁽²⁾ Ja, bei Anwendung von optischen Instrumenten Ja, bei Applikationen, die Abwendungsreaktionen oder Lidschlussreflex einschränken oder verhindern sowie ■ unter Verhältnissen, bei denen bewusst in den Strahl geblickt werden muss Sonst: Nein
Klasse 3 R	 Blick in den direkten oder gespiegelten Strahl kann gefährlich sein Blick in den diffus gestreuten Strahl nicht gefährlich hautsicher 	Ja, bei Instandhaltung ⁽²⁾ Ja, hinsichtlich der Gefahr für Augen innerhalb des Gefahrenbereiches. Das Risiko ist gering bei zufällig kurzzeitiger Exposition Sonst: Nein
Klasse 3 B	 Blick in den direkten oder gespiegelten Strahl kann gefährlich sein Blick in den diffus gestreuten Strahl außerhalb eines Abstandes von 13 cm bei einer Betrachtungsdauer von weniger als 10 s nicht gefährlich kann im oberen Leistungsbereich hautgefährlich sein 	Ja, Instandhaltung ⁽²⁾ Ja, hinsichtlich der Gefahr für Augen und Haut innerhalb des Gefahrenbereiches. Das Risiko für Haut ist gering Sonst: Nein
Klasse 4	 Blick in den direkten oder gespiegelten Strahl kann sehr gefährlich sein Blick in den diffus gestreuten Strahl kann gefährlich sein kann für Haut gefährlich sein 	Ja, bei Instandhaltung ⁽²⁾ Ja, hinsichtlich der Gefahr für Augen- und Haut innerhalb des jeweiligen Gefahrenbereiches Sonst: Nein

⁽¹⁾ Sicherheit, Gefahr gegenüber biologischer Wirkung im Gefahrenbereich unter vorhersehbaren Bedingungen bei bestimmungsgemäßer Verwendung für kontinuierlichen und gepulsten Betrieb

⁽²⁾ Instandhaltung, wie Wartung, Störungsbehebung, Reparatur, Justierung. Beispielsweise kann bei gekapselten Lasereinrichtungen durch Entfernen von Schutzeinrichtungen im Rahmen der Instandhaltung ein wesentlich höheres Gefahrenpotenzial auftreten als durch die Laserklasse angegeben ist. Daher ist für derartige Tätigkeiten immer zu prüfen, unter welchen Voraussetzungen sie sicher durchgeführt werden können.